Published: Feb 13, 2024 by Ismail El Baggari
Noah Schnitzer (Cornell) et al demonstrate the use of a cryogenic MEMS-based system that achieves intermediate cryogenic temperature. This allows for the first time atomic-resolution STEM imaging and picometer precision mapping as a function of temperature, a key capability for understanding the evolution of order. Even more impressive, the results here show that we can track order in the exact same field of view across temperature, registered unit cell to unit cell. This allows tracking of topological defects in charge order and how they lead to melting of order. Read the pre-print here.